Contents

2.12 Determining Ground-Water Recharge from Baseflow 51
 2.12.1 Seasonal Recession Method (Meyboom Method) 51
 2.12.2 Recession Curve Displacement Method (Rombaugh Method) 53

2.13 Measurement of Streamflow 55
 2.13.1 Stream Gauging 55
 2.13.2 Weirs 57

2.14 Manning Equation 58

Notation 60 • Analysis 61 • Problems 61

Chapter 3

Properties of Aquifers 66

3.1 Matter and Energy (A Brief Review of Physics) 66
3.2 Porosity of Earth Materials 69
 3.2.1 Definition of Porosity 69
 3.2.2 Porosity and Classification of Sediments 70
 3.2.3 Porosity of Sedimentary Rocks 75
 3.2.4 Porosity of Plutonic and Metamorphic Rocks 77
 3.2.5 Porosity of Volcanic Rocks 78

3.3 Specific Yield 78
3.4 Hydraulic Conductivity of Earth Materials 81
 3.4.1 Darcy's Experiment 81
 3.4.2 Hydraulic Conductivity 82
 3.4.3 Permeability of Sediments 84
 Case Study: Hydraulic Conductivity Estimates in Glacial Outwash 88
 3.4.4 Permeability of Rocks 89

3.5 Permeameters 90
3.6 Water Table 93
3.7 Aquifers 95
3.8 Water-Table and Potentiometric Surface Maps 98
3.9 Aquifer Characteristics 100
3.10 Compressibility and Effective Stress 102
3.11 Homogeneity and Isotropy 104
3.12 Gradient of the Potentiometric Surface 107

Notation 109 • Analysis 109 • Problems 109

Chapter 4

Principles of Ground-Water Flow 113

4.1 Introduction 113
4.2 Mechanical Energy 114
4.3 Hydraulic Head 115
4.4 Head in Water of Variable Density 118
4.5 Force Potential and Hydraulic Head 121
4.6 Darcy's Law 122
Chapter

Ground-Water Flow to Wells

5.1 Introduction 150
5.2 Basic Assumptions 151
5.3 Radial Flow 151
5.4 Computing Drawdown Caused by a Pumping Well 153
 5.4.1 Flow in a Completely Confined Aquifer 153
 5.4.2 Flow in a Leaky, Confined Aquifer 156
 5.4.3 Flow in an Unconfined Aquifer 164
5.5 Determining Aquifer Parameters from Time-Drawdown Data 166
 5.5.1 Introduction 166
 5.5.2 Steady-State Conditions 166
 5.5.3 Nonequilibrium Flow Conditions 169
 5.5.4 Nonequilibrium Radial Flow in a Leaky Aquifer with Storage in the Aquitard 183
 5.5.5 Nonequilibrium Radial Flow in an Unconfined Aquifer 184
 5.5.6 Effect of Partial Penetration of Wells 188
5.6 Slug Tests 190
 5.6.1 Determination of Aquifer Parameters with Slug Tests 190
 5.6.2 Overdamped Response Slug Tests 190
 5.6.3 Underdamped Response Slug Test 200
 5.6.4 General Observations on Slug-Test Analysis 204
5.7 Estimating Aquifer Transmissivity from Specific Capacity Data 205
5.8 Intersecting Pumping Cones and Well Interference 207
5.9 Effect of Hydrogeologic Boundaries 208
5.10 Aquifer-Test Design 210
 5.10.1 Single-Well Aquifer Tests 210
 5.10.2 Aquifer Tests with Observation Wells 212

Notation 214 • Computer Notes 214 • Analysis 215 • Problems 215
Chapter 6

Soil Moisture and Ground-Water Recharge

- 6.1 Introduction 219
- 6.2 Porosity and Water Content of Soil 220
- 6.3 Capillarity and the Capillary Fringe 223
- 6.4 Pore-Water Tension in the Vadose Zone 225
- 6.5 Soil Water 225
- 6.6 Theory of Unsaturated Flow 228
- 6.7 Water-Table Recharge 231

Notation 234 • Analysis 235 • Problems 235

Chapter 7

Regional Ground-Water Flow

- 7.1 Introduction 236
- 7.2 Steady Regional Ground-Water Flow in Unconfined Aquifers 237
 - 7.2.1 Recharge and Discharge Areas 237
 - 7.2.2 Ground-Water Flow Patterns in Homogeneous Aquifers 237
 - 7.2.3 Effect of Buried Lenses 243
 - 7.2.4 Nonhomogeneous and Anisotropic Aquifers 244
- 7.3 Transient Flow in Regional Ground-Water Systems 247
- 7.4 Nongeoeic Ground Water 248
- 7.5 Springs 248
- 7.6 Geology of Regional Flow Systems 250
 - Case Study: Regional Flow Systems in the Great Basin 250
 - Case Study: Regional Flow Systems in the Coastal Zone of the Southeastern United States 255
 - Case Study: Regional Flow System of the High Plains Aquifer 263
 - Case Study: The Dakota Aquifer 268
- 7.7 Interactions of Ground Water and Lakes or Wetlands and Streams 272

Computer Notes 279 • Notation 280 • Analysis 280 • Problems 280

Chapter 8

Geology of Ground-Water Occurrence

- 8.1 Introduction 283
- 8.2 Unconsolidated Aquifers 284
 - 8.2.1 Glaciated Terrane 285
 - Case Study: Hydrogeology of a Buried Valley Aquifer at Dayton, Ohio 289
8.3 Lithified Sedimentary Rocks 297
Case Study: Sandstone Aquifer of Northeastern Illinois—Southeastern Wisconsin 297
8.3.1 Complex Stratigraphy 300
8.3.2 Folds and Faults 302
Case Study: Faults as Aquifer Boundaries 303
8.3.3 Clastic Sedimentary Rocks 307
Case Study: Newark Basin Hydrogeology 309
8.3.4 Carbonate Rocks 310
8.3.5 Coal and Lignite 319

8.4 Igneous and Metamorphic Rocks 319
8.4.1 Intrusive Igneous and Metamorphic Rocks 319
8.4.2 Volcanic Rocks 321
Case Study: Volcanic Plateaus—Columbia River Basalts 321
Case Study: Volcanic Domes—Hawaiian Islands 322

8.5 Ground Water in Permafrost Regions 323
Case Study: Alluvial Aquifers—Fairbanks, Alaska 326

8.6 Ground Water in Desert Areas 326
Case Study: Desert Hydrology—Azraq Basin, Jordan 327

8.7 Coastal-Plain Aquifers 327

8.8 Fresh-Water–Salt-Water Relations 331
8.8.1 Coastal Aquifers 331
8.8.2 Oceanic Islands 335

8.9 Tidal Effects 337

8.10 Ground-Water Regions of the United States 338
8.10.1 Western Mountain Ranges 338
8.10.2 Alluvial Basins 340
8.10.3 Columbia Lava Plateau 341
8.10.4 Colorado Plateau and Wyoming Basin 341
8.10.5 High Plains 341
8.10.6 Nonglaciated Central Region 342
8.10.7 Glaciated Central Region 342
8.10.8 Piedmont—Blue Ridge Region 345
8.10.9 Northeast and Superior Uplands 343
8.10.10 Atlantic and Gulf Coastal Plain 343
8.10.11 Southeast Coastal Plain 344
8.10.12 Alluvial Valleys 344
8.10.13 Hawaiian Islands 344
8.10.14 Alaska 344
8.10.15 Puerto Rico 344

Notation 345 • Problems 345
CHAPTER

Water Chemistry

9.1 Introduction 346
9.2 Units of Measurement 347
9.3 Types of Chemical Reactions in Water 348
9.4 Law of Mass Action 348
9.5 Common-Ion Effect 350
9.6 Chemical Activities 350
9.7 Ionization Constant of Water and Weak Acids 353
9.8 Carbonate Equilibrium 355
 9.8.1 Carbonate Reactions 356
 9.8.2 Carbonate Equilibrium in Water with Fixed Partial Pressure of CO₂ 358
 9.8.3 Carbonate Equilibrium with External pH Control 359
9.9 Thermodynamic Relationships 361
9.10 Oxidation Potential 362
9.11 Ion Exchange 366
9.12 Isotope Hydrology 368
 9.12.1 Stable Isotopes 368
 9.12.2 Radioactive Isotopes Used in Age Dating 371
9.13 Major Ion Chemistry 373
9.14 Presentation of Results of Chemical Analyses 374
 9.14.1 Piper Diagram 374
 9.14.2 Stiff Pattern 376
 9.14.3 Schoeller Semi-logarithmic Diagram 377
Case Study: Chemical Geohydrology of the Floridan Aquifer System 377
Notation 381 • Analysis 382 • Problems 383

CHAPTER

Water Quality and Ground-Water Contamination

10.1 Introduction 385
10.2 Water-Quality Standards 388
10.3 Collection of Water Samples 389
10.4 Ground-Water Monitoring 391
 10.4.1 Planning a Ground-Water Monitoring Program 391
 10.4.2 Installing Ground-Water Monitoring Wells 391
 10.4.3 Withdrawing Water Samples from Monitoring Wells 396
10.5 Vadose-Zone Monitoring 397
10.6 Mass Transport of Solutes 400
 10.6.1 Introduction 400
 10.6.2 Diffusion 400
 10.6.3 Advection 403
 10.6.4 Mechanical Dispersion 401
 10.6.5 Hydrodynamic Dispersion 402
10.7 Ground-Water Contamination 415
10.7.1 Introduction 415
10.7.2 Septic Tanks and Cesspools 416
10.7.3 Landfills 418
10.7.4 Chemical Spills and Leaking Underground Tanks 420
10.7.5 Mining 423
Case Study: Contamination from Uranium Tailings Ponds 424
10.7.6 Other Sources of Ground-Water Contamination 425

10.8 Ground-Water Restoration 426
10.8.1 Risk-Based Corrective Action 426
10.8.2 Source-Control Measures 426
10.8.3 Plume Treatment 427
10.8.4 Natural and Enhanced Bioremediation 428

10.9 Case History: Ground-Water Contamination at a Superfund Site 428
10.9.1 Background 428
10.9.2 Geology 430
10.9.3 Hydrogeology 431
10.9.4 Ground-Water Contamination 432
10.9.5 Site Remediation 434

10.10 Capture-Zone Analysis 436
Notation 439 • Analysis 440 • Problems 440

11.1 Introduction 441
11.2 Dynamic Equilibrium in Natural Aquifers 442
Case Study: Deep Sandstone Aquifer of Northeastern Illinois 443
11.3 Ground-Water Budgets 443
11.4 Management Potential of Aquifers 445
11.5 Paradox of Safe Yield 447
11.6 Water Law 449
11.6.1 Legal Concepts 449
11.6.2 Laws Regulating Quantity of Surface Water 449
11.6.3 Laws Regulating Quantity of Ground Water 452
Case Study: Arizona’s Ground-Water Code 454
11.6.4 Laws Regulating the Quality of Water 455
Case Study: Wisconsin’s Ground-Water Protection Law 458
11.7 Artificial Recharge 459
11.8 Protection of Water Quality in Aquifers 460
11.9 Ground-Water Mining and Cyclic Storage 463
11.10 Conjunctive Use of Ground and Surface Water 464
11.11 Global Water Issues 465
Analysis 467
CHAPTER

Field Methods

12.1 Introduction 468
12.2 Fracture-Trace Analysis 469
12.3 Surficial Methods of Geophysical Investigations 474
 12.3.1 Direct-Current Electrical Resistivity 474
 12.3.2 Electromagnetic Conductivity 479
 12.3.3 Seismic Methods 483
 12.3.4 Ground-Penetrating Radar and Magnetometer Surveys 490
 12.3.5 Gravity and Aeromagnetic Methods 491
12.4 Geophysical Well Logging 492
 12.4.1 Caliper Logs 495
 12.4.2 Temperature Logs 495
 12.4.3 Single-Point Resistance 495
 12.4.4 Resistivity 498
 12.4.5 Spontaneous Potential 498
 12.4.6 Nuclear Logging 499
 Case Study: Use of Multiple Geophysical Methods to Determine the Extent and
 Thickness of a Critical Confining Layer 502
12.5 Hydrogeologic Site Evaluations 505
12.6 Responsibilities of the Field Hydrogeologist 508
12.7 Project Reports 510
Notation 512 • Problems 512

CHAPTER

Ground-Water Models

13.1 Introduction 514
13.2 Applications of Ground-Water Models 516
13.3 Data Requirements for Models 517
13.4 Finite-Difference Models 519
 13.4.1 Finite-Difference Grids 519
 13.4.2 Finite-Difference Notation 519
 13.4.3 Boundary Conditions 520
 13.4.4 Methods of Solution for Steady-State Case for Square Grid Spacing 521
 13.4.5 Methods of Solution for the Transient Case 523
13.5 Finite-Element Models 524
13.6 Use of Published Models 525
13.7 MODFLOW Basics 528
13.8 Visual MODFLOW 530
13.9 Geographical Information Systems 530
Analysis 531
Appendices 534
1. Values of the function \(W(n) \) for various values of \(n \) 535
2. Values of the function \(F(\eta, \mu) \) for various values of \(\eta \) and \(\mu \) 536
3. Values of the functions \(W(\mu, r/B) \) for various values of \(\mu \) 537
4. Values of the function \(H(\mu, B) \) 538
5. Values of the functions \(K_0(x) \) and \(\exp (x/K_0(x)) \) 539
6. Values of the functions \(W(n_0, \Gamma) \), and \(W(n_0, \Gamma) \) for water-table aquifers 540
7. Table for length conversion 542
8. Table for area conversion 542
9. Table for volume conversion 543
10. Table for time conversion 543
11. Solubility products for selected minerals and compounds 544
12. Atomic weights and numbers of naturally occurring elements 545
13. Table of values of \(
\text{erf}(x) \) and \(\text{erfc}(x) \) 547
14. Absolute density and absolute viscosity of water 548
15. Loading and running computer programs 549

Glossary 552
Answers 562
References 567
Index 588